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Abstract. The Tolman-Oppenheimer-Volkoff equations are solved taking into  account 

the cosmological constant. The equation of state (EOS) developed in a Modified Quark 

Meson Coupling Model (MQMC) is given as the input for solving the TOV equations. 

Under such a model the confining interaction for quarks inside a baryon is represented by 

a phenomenological average potential in an equally mixed scalar-vector harmonic form. 

The hadron-hadron interaction in nuclear matter is then realized by introducing additional 

quark couplings to s, ω, and ρ mesons through mean-field approximations. Our results 

satisfy the maximum mass constraint of 2Me for neutron stars, as determined in recent 

measurements of the pulsar PSR J0348+0432.   
e 
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1. Introduction 

        The recent achievements in the measurement of the accurate mass of pulsars 

PSR J1614-2230 (1.97± 0.04Me) [1] and PSR J0348+0432 (2.01±0.04Me) [2] has 

provided new challenges and constraints to formulate a relevant dense  nuclear 

matter equation of state (EOS). The knowledge of the maximum allowed mass 

helps in distinguishing various objects like neutron stars, black holes and 

supernovae. An important theoretical tool to determine the mass and radius of 

compact objects is the Tolman-Oppenheimer-Volkoff (TOV) equations. These 

equations are derived from the Einstein field equations when the metric (i.e., the 

gravitational field) is assumed to be spherically symmetric and independent of 

time. The cosmological constant Λ was introduced in the field equations by 

Einstein [3, 4] to obtain the solution of the gravitational field equation for a static 

dust filled Universe. However, with the discovery of the expansion of the 

Universe by Hubble [5, 6], Einstein abandoned the cosmological constant. In 
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current literature, Λ has become a significant quantity to analyse the expansion of 

the Universe. It has also been corroborated by the recent observation of the 

expansion of the Universe through redshift. The present analysis has added 

greater significance of cosmological constant in the studies of the accelerating 

pace of the expansion of the Universe. Further it is to be noted that the 

cosmological constant is related to the vacuum energy. Vacuum energy arises in 

quantum mechanics as due to the uncertainty principle. In particle physics the 

vacuum refers to the ground state, i.e., the lowest energy configuration. In general 

relativity all forms of energies gravitate. This ground state vacuum energy 

impacts the dynamics of the expansion of the Universe. The vacuum energy and 

the cosmological constant have identical behaviour in general relativity as long as 

the vacuum energy density is identified with ρvac = Λ/8πG whose value is nearly 

10
-47

 GeV
4
. 

In view of this, there are many attempts by different workers to account for 

such energy density values. However, in the present work we have made an 

attempt to study the effects of variation of Λ in realising the mass and radius of 

the compact objects such as neutron stars without considering the exact value of 

Λ. To study the influence of Λ, we develop the dense matter EOS using a 

modified quark meson coupling model [7, 8] and use it to solve the Λ 

incorporated TOV equations. An earlier work applied the EOS of the QMC 

model to study the effect of the variation of Λ [9]. 

2. Model description 

The Modified Quark Meson Coupling Model (MQMC) is based on a 

suitable relativistic independent quark potential model to address the nucleon 

structure in vacuum. In such a picture the light quarks inside a bare nucleon are 

considered to be independently confined by a phenomenological average 

potential with an equally mixed scalar-vector harmonic form. Such a potential 

has characteristically simplifying features in converting the independent quark 

Dirac equation into an effective Schrodinger like equation for the upper 

component of the Dirac spinor which can be easily solved. Corrections due to the 

spurious center of mass motion as well as those due to short range one gluon 

exchange and quark-pion coupling would be accounted for in a perturbative 

manner to obtain the nucleon mass in vacuum.  

Then the NN interaction in nuclear matter is realized by introducing an 

additional quark coupling to sigma (ζ) and omega (ω) mesons through mean field 

approximations. The relevant parameters of the interaction are obtained self-
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consistently while realizing the saturation properties such as the binding energy 

of the nuclear matter. We first consider nucleons as a composite of constituent 

quarks confined in a phenomenological flavor independent confining potential, 

U(r) in an equally mixed scalar and vector harmonic form inside the nucleon [7], 

where 

 ( )   
 

 
(    ) ( ) 

with 

          V (r) = (ar
2 
+ V0), a >0.           (1) 

Here (a, V0) are the potential parameters. The confining interaction here provides 

the zeroth order quark dynamics of the hadron. In the medium, the quark field 

ψq(r) satisfies the Dirac equation 

   0
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where,      
 
  ,      

 
  ,      

 
   ; with ζ0, ω0 and b03 being the 

classical meson fields, gζ
q
, gω

q 
and gρ

q 
are the quark couplings to the ζ, ω and ρ 

mesons respectively. mq is the quark mass and η3q is the third component of the 

Pauli matrices. In the present paper, we consider nonstrange q = u and d quarks 

only. We can now define 
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where the effective quark energy   
        

 

 
     , and effective quark 

mass    
          

 We now introduce λq and r0q as 

                  
    

     and       (   )            (4) 

The ground state quark energy can be obtained from the eigenvalue condition 

          
    

 √
  

 
             (5) 

The solution of equation (5) for the quark energy   
  immediately leads to the 

mass of the nucleon in the medium in zeroth order as      

     
   ∑   

 
                 (6) 

We next consider the spurious centre of mass correction , the pionic 

correction δMN
π 

for restoration of chiral symmetry and the short distance one 
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gluon exchange contribution (∆EN)g to the zeroth order nucleon mass in the 

medium. The centre of mass correction  and the pionic corrections δMN
π 
in the 

present model are found respectively as [7]        

                   
    

      
 

 (   
    

 )    
               (7) 

and                 
   

   

  
      

                     (8) 

Here,               

    
 

   
 ∫   

    ( )

  
 

 

 
              (9) 

with the axial vector nucleon form factor given as      

   ( )     
 

 

  

  (   
     

 )
       

    .               (10) 

The pseudovector nucleon pion coupling constant fNNπ can be obtained from the 

familiar Goldberg Triemann relation using the axial vector coupling constant 

value gA in the model as discussed in [7]. 

The color electric and color magnetic contribution to the gluonic correction 

which arises due to one gluon exchange at short distances are given as: 

(   ) 
    (      

        
        

 )            (11) 

and due to color magnetic contributions, as  

    
    (      

        
        

  ,            (12) 

where aij and bij are the numerical coefficients depending on each baryon. The 

color electric contributions to the correction of baryon masses due to one gluon 

exchange are calculated in a field theoretic manner [7]. It can be found that the 

numerical coefficient for color electric contributions such as buu,bus and bss comes 

out zero. From calculations we have auu = −3 and aus = ass = buu = bus = bss = 0 for 

the nucleons. The quantities Iij
E,M 

are given in the following equation 
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(  
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In the calculation we have taken αc = 0.58 as the strong coupling constant in QCD 

at the nucleon scale [10]. The color electric contribution is zero here, and the 

gluonic corrections to the mass of the nucleon are due to color magnetic 

contributions only. 

Finally treating all these corrections independently, the mass of the nucleon 

in the medium becomes 

               
    

          
  (   ) 

  (   ) 
                                      (15) 

3. The Equation of State 

The total energy density and pressure at a particular baryon density for the 

nuclear matter becomes 
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where γ = 2 is the spin degeneracy factor for nuclear matter. The vector mean-

fields ω0 and b03 are determined through 

   
  

  
                        

  

   
                             (18) 

where gω = 3gω
q 
and gρ = gρ

q
. Finally, the scalar mean-field ζ0 is fixed by  

     
  

   
                  (19) 

The iso-scalar scalar and iso-scalar vector couplings gζ
q 

and gω are fitted to the 

saturation density and binding energy for nuclear matter. The isovector vector 

coupling gρ is set by fixing the symmetry energy. For a given baryon density, ω0, 

b03 and ζ0 are calculated from the equation (18) and (19) respectively. The 

chemical potentials, necessary to define the β− equilibrium conditions, are given 

by 

2 *2

0 3 03N N N Nk M g g b                (20) 

where η3N is the isopsin projection of the nucleon N. 

The lepton Fermi momenta are the positive real solutions of (  
  

  
 )    µe  and (kµ

2
+m

2
µ)

1/2 
= µµ. The equilibrium composition of the star is 
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obtained by solving the equations of motion of meson fields in conjunction with 

the charge neutrality condition, given in equation (21),     

       ∑    
   

 

    ∑   
  

 

                       (21) 

where qN corresponds to the electric charge of nucleon species N and ql 

corresponds to the electric charge of lepton species l. The total density is given 

by  3 2/ 6 .N Nk     

Following the determination of the EOS the relation between the mass and 

radius of a star with its central density can be obtained by integrating the Tolman-

Oppenheimer-Volkoff (TOV) equations [11] given by, 

    
  

  
  

 

 

              

(     )
                   (22)

   

    
  

  
                      (23) 

Table 1: Parameters for nuclear matter. They are determined from the binding 

energy per nucleon, B.E = B0 ≡ E/ρB − MN = −15.7 MeV and pressure, P = 0 at 

saturation density ρB = ρ0 = 0.15 fm
−3

. 

 

mq (MeV)  gω gρ a(fm
−3

) V0(MeV) 

80 4.89039 5.17979 9.04862 0.81 82.9316 

 

Table 2: Stellar properties obtained for different values of the cosmological 

constant. 

 

Λ × ε0 M  R (km) 

0 1.91 12.51 

2.5 2.00 13.05 

5.0 2.12 13.74 
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with G as the gravitational constant and M(r) as the enclosed gravitational mass. 

We have used c = 1. The TOV equation changes its form with the inclusion of the 

cosmological constant [12, 13] and can be expressed as, 

 

  

  
  (   )        

  

 
  

  

   
    (   

  

 
  

  

 
)         (24) 

 

Given an EOS, these equations can be integrated from the origin as an initial 

value problem for a given choice of the central energy density, (ε0). Of particular 

importance is the maximum mass obtained from the solution of the TOV 

equations. The value of r (= R), where the pressure vanishes defines the surface 

of the star. 

4. Results and Discussion 

We set the model parameters (a,V0) by fitting the nucleon mass MN = 939 

MeV and charge radius of the proton <rN> = 0.87 fm in the free space. Taking 

standard values for the meson masses, namely mζ = 550 MeV, mω = 783 MeV and 

mρ = 763 MeV and fitting the quark-meson coupling constants self consistently, 

we obtain the correct saturation properties of nuclear matter binding energy, B.E. 

≡ B0 = E/ρB − MN = −15.7 MeV, pressure, P = 0 and symmetry energy J = 32.0 

MeV at ρB = ρ0 = 0.15 fm
−3

. The values of ,qg g  and g  obtained this way and 

the values of the model parameters at quark masses 80 MeV are given in Table 1. 

The EOS obtained from the MQMC model with the above set of parameters 

is used to determine the mass and radius of the compact stars. The value of Λ 

predicted from cosmological models [14] as well as measurements by the High Z 

Supernova Team and the Supernova Cosmological Project [15, 16] is Λ = 2.036 

× 10
−35

s
−2 

which is of the order of 10
−84 

GeV
2
. The vacuum energy density 

defined as Λ/8πG is of the order of 10
−47 

GeV
4
. Since the value of Λ is very 

small, solution of the TOV equations is prohibitively difficult in the available 

precision of the computing device. 
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Fig. 1: Star mass as a function of radius for various values of the cosmological constant 

at quark masses mq = 80 MeV. Also shown is the mass observed for the pulsar PSR 

J0348+0432 in [2]. 

We therefore consider a quantity (Λ×ε0) proportional to the accepted value of 

the cosmological constant, where ε0 is the central energy density of the star. The 

results obtained by varying the cosmological constant are shown in Table 2. It 

may be noted that the radius increases with the increase in the mass. This is 

contrary to the trend observed in earlier works of the MQMC model [8]. Fig. 1 

shows the gravitational mass as a function of radius for different values of Λ. It is 

observed that with an increase in the value of the cosmological constant, the 

maximum mass of the star increases from  1.91M for Λ0 = 0 to 2.12 eM for       

Λ0 = 5.  

5. Conclusion 

In the present work we studied the EOS for dense nuclear matter using a 

modified quark-meson coupling model (MQMC). Self-consistent calculations 

were made using a relativistic quark model with chiral symmetry along with the 

spurious centre of mass correction, pionic correction for restoration of chiral 

symmetry and short distance correction for one gluon exchange to realize 

different bulk nuclear properties. 

We observe that the variation in the cosmological constant influences the 

mass and radius of the star. Solving the TOV equations with the inclusion of the 

cosmological constant we determine the mass and radius of neutron stars. Unlike 

our previous results [8], we observe an increase in radius with the increase in the 

mass of the star. We were able to obtain the observed mass of two accurately 

calculated pulsars, namely, PSR J0348+0432 and PSR J1614-2230 by varying the 

cosmological constant. 

ʘ 
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